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In his recent papers, Longuet-Higgins derived a relation of mean angular momentum 
for gravity waves in deep water. In this paper, an expression for the mean Eulerian 
angular momentum in water of arbitrary depth is derived. It differs from Longuet- 
Higgin's expression by an additive term 2IB/g accounting for finite-depth effects, 
where I is the density of mean horizontal momentum, B the Bernoulli constant and 
g the gravitational acceleration. In addition, the present derivation appears to be 
simpler and more straightforward. 

1. Introduction 
Research on integral properties of progressive, irrotational gravity waves has 

received considerable attention (Starr 1947a, b; Longuet-Higgins 1975, 1980, 1984). 
In his recent papers, Longuet-Higgins (1980, 1984) defined the quantity of angular 
momentum in progressive gravity waves, and suggested that this quantity is likely 
to be associated with the phenomenon of wave breaking. Furthermore, adopting a 
series expansion of space variables (X, y) in terms of velocity potential @ and stream 
function Y' of steady-state waves, he derived a simple relation between the Eulerian 
mean angular momentum XE and the Lagrangian function L = T- V in water of 
infinite depth (Longuet-Higgins 1984), i.e. 

2c xE = -(T- f? V ) ,  

where T and V are densities of mean kinetic and potential energies, c the phase 
velocity, and g the gravitational acceleration. 

In  this short note we derived a similar relationship for finite-depth water using a 
rather different but simpler approach. 

2. Derivation 
The notations used here are exactly the same as those in Longuet-Higgins (1980, 

1984). A train of waves with wavelength h and phase velocity c is travelling in the 
x-direction in water of constant depth h. The y-axis is vertically upward, and the 
origin is chosen at  the mean water surface (see figure 1). The pressure at  the free 
surface is assumed to be zero, i.e. Po = 0. (If Po + 0, we can simply substitute P-P, 
for P in the following derivation, and all the expressions still hold.) The density of 
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f '  

FIQURE 1. A train of progressive waves. 

the Eulerian mean angular momentum about the origin is defined as (Longuet- 
Higgins 1980, 1984) 

ji - _  E - loA p(Yu-m) dydx 

where u and v are components of particle velocity, p is the density of water, and the 
overbar denotes the mean value with respect to time t. 

For any point in progressive waves, the following equations hold: 

where 

du ap 
p--=--  dt ax' 

[+(u'+v') + p  +P~Y-PCU] u = ~ B u ,  

- 1 A  B = ?julh = Jo ;tU2(x-ct, -h )  dx, 

(3) 

which should be considered to be one of the most important parameters characterizing 
the wave dynamics in the case of finite depth (Longuet-Higgins 1975). 

Multiplying (3) and (4), respectively, by the velocity potential q5 and the stream 
function $ of the progressive waves, and utilizing the following identities : 

_ -  d$ - ua+vz-cu, 
dt 

we readily abtain 
du$ aPq5 pu+p(ua+v2)u = p-+-+pcue, 
dt ax 

dv$ a 
pu = p-+-(p+pgy)$-pcva-pgyu. 

dt ay 
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Elimination of the terms $p(u2+ v2) u and pu on the left-hand side of ( 5 )  by using (9) 
and (10) leads to 

(11)  
a 
aY pgyu = pc(u2 + v2) -- (p + pgy)  $h + 2pBu -f(z- ct, y), 

where 

Integrating (1 1) over a range of one wavelength and using Green's theorem, we easily 
obtain the relationship between the Eulerian mean angular momentum xE and the 
Lagrangian function L = T- V in the case of finite-depth water: 

2c 21 

9 9 
X E  = -(T- V ) + - B ,  

where I is the well-known density of mean horizontal momentum defined by 

I=j+>. 

In deriving the above relationship, we have taken into account the fact that 

$q = constant + cq 
f A  f n  

and J, J ' f(z-ct,y)dydx = 0. 
-h 

(14) 

Equation (16) can be easily proved if we make use of the following conditions : (i) 
u, v, $, $h and p are periodic functions with respect to x and t ;  (ii) p ,  = 0; and (iii) 
v dx- (u-  c )  dy = 0 a t  the surface (kinematic boundary condition at  the free surface). 

Note that in the case of infinite depth B = O(1im Bh = 0); hence (13) reduces 
to (1)  as derived by Longuet-Higgins. h m  
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